Fire in a Changing Climate

Louis Giglio | University of Maryland, College Park

Christopher Williams | Clark University

Doug Morton | NASA's Goddard Space Flight Center

Hsiao-Wen Lin | University of California, Irvine

2012 U.S. MODIS Active Fires (through October)

Large Increase in **Burned Area** across Wildlands of the Western US in Recent Decades

Sources: Image from http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=78284

Burned Areas 1984 to 2008 (all severities) Fire time intervals 1984-1989

1990-1999

2000-2008

Source: Monitoring Trends in Burn Severity http://www.mtbs.gov/

Large Increase in **Carbon Release** from Western US Wildland Fires over Recent Decades

Fires Are a Sizeable Part of Disturbed Area

	Western U.S. [km² year-1]	Percent of Total Disturbed Area
Beetles (ADS)*	13,000	54%
Fires (MTBS)**	4,000	17%
Harvest (USFS)***	7,000	29%
Total Disturbed	24,000	100%
Total Forested	840,000	

^{*}Ghimire et al. in review, **Ghimire et al. JGR-B 2012, ***Williams et al. GBC 2012

Fires are an Even Larger Part of **Carbon Impacts**[†] Across Major Disturbance Types

	Western U.S. [Tg C year ⁻¹]	Percent of Total Disturbed Area
Beetles (ADS)*	7 to 15	16%
Fires (MTBS)**	20 to 25	33%
Harvest (USFS)***	30 to 40	51%
Total Disturbed	57 to 80	100%

[†]Carbon from disturbance-killed biomass including combustion, live to dead transfers, and removals

Interannual variability in US burned area is strongly correlated with potential evaporation (PE), a measure of dryness during the fire season:

Dryness during the fire season and burned area have both increased between 1980 and 2010:

Projected increase in dryness: middle emissions scenario RCP 4.5

Projected increase in dryness: high emissions scenario

RCP 8.5

Drier conditions by mid-century increase projected burned area under middle and high emissions scenarios:

	Alaska	No. Plains	So. Plains	Midwest	Northwest	Southeast	Southwest	US
RCP 4.5	13%	73%	264%	125%	19%	135%	34%	78%
RCP 8.5	101%	117%	407%	164%	44%	202%	61%	125%

Climate projections suggest a longer, stronger fire season by 2100:

Black: Historic Observations, Blue: RCP4.5, Red: RCP8.5

Most models suggest an increase in the frequency of extreme events:

Associate active fire with three management types, and quantify decadal trends (2001-2010), interannual variability, seasonality, and climate sensitivity:

- 1. Wildland fires
- 2. Agricultural fires (in croplands)
- 3. Prescribed/other fires (in plantations, grasslands, rangelands, or other)

MTBS: Monitoring Trends in Burn Severity http://mtbs.gov

Agricultural and prescribed fires account for 70% of total active fires in continental US

Agricultural and perscribed fires have distinctive seasonal patterns that come later in the year

Peak fire month

Agricultural fires have increased by 30% over the last decade in the continental US

Agricultural fires have increased by 30% over the last decade in the continental US...yet are less sensitive to dryness

Conclusions

- Approximately 70% of active fire detections in the US are due to management
- There is a 30% overall increase in agricultural fires in the last decade
- Climate plays a smaller role in driving these fires than it does with wildland fires
- There is potential to control fire emissions by regulating these fires with a careful cost benefit analysis

2012 U.S. Fire Season (through October)

For images and additional information on this research, visit: http://go.usa.gov/gKsx